A stable test for strict sign regularity

نویسندگان

  • V. Cortés
  • Juan Manuel Peña
چکیده

A stable test to check if a given matrix is strictly sign regular is provided. Among other nice properties, we prove that it has an optimal growth factor. The test is compared with other alternative tests appearing in the literature, and its advantages are shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic stability, regularity, and quasiminimality

We study (and sometimes introduce) the notions generic stability, regularity, homogeneous pregeometries, quasiminimality, and their mutual relations, in arbitrary first order theories. We prove that “infinite-dimensional homogeneous pregeometries” coincide with generically stable strongly regular types (p(x), x = x). We prove that in a theory without the strict order property, regular types are...

متن کامل

Construction of strict Lyapunov function for nonlinear parameterised perturbed systems

In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.

متن کامل

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

On the stable solution of large scale problems over the doubly nonnegative cone

The recent approach of solving large scale semidefinite programs with a first order method by minimizing an augmented primal-dual function is extended to doubly nonnegative programs. A key point governing the convergence of this approach are regularity properties of the underlying problem. Regularity of the augmented primal-dual function is established under the condition of uniqueness and stri...

متن کامل

Curvature Flows in Semi-riemannian Manifolds

We prove that the limit hypersurfaces of converging curvature flows are stable, if the initial velocity has a weak sign, and give a survey of the existence and regularity results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2008